
Issues in Supporting Third-Partys In-Network
Services in the Internet

A. Silvestro†‡∗, R. Bifulco†, S. Sharma†, F. Schneider†, J. Kangasharju⊥, X. Fu‡
NEC Laboratories Europe, Germany†, University of Helsinki⊥, University of Goettingen‡

Email: Alessio.Silvestro@neclab.eu∗

Abstract—In-network services are important building blocks
for today’s network applications (e.g., CDNs, antiviruses, proxies,
etc.). However, current solutions ignore to a large extent their
presence forcing ISPs and service providers in implementing sev-
eral workarounds which negatively impact services’ security and
reliability. This paper presents an early stage Ph.D. project which
aims to highlight current solutions inefficiencies, identifying a few
areas which need further investigation and that will be addressed
in our future work.

I. INTRODUCTION

In-network services are important building blocks for to-
day’s network applications [5]. Content Distribution Networks
(CDNs) [15], antiviruses [10], privacy protecting proxies [16],
performance enhancers [19], are just a few examples of
such services [18]. Despite this state of affair, the Internet’s
architecture and protocols ignore to a large extent the presence
of in-network services, forcing network and service providers
in implementing workarounds [1], [8] that negatively impact
services’ security and reliability [7]. The issue is particularly
relevant if one considers that such in-network services are
actually provided by a third party. For instance, when a user
connects to her bank website, she may be actually connecting
to a front-end CDN, which is provided by a third party the
bank employs while the user is unaware of it [3]. Recent
studies on cryptographic private key sharing and certificate
bundling give an idea of the extent to which this issue is hitting
everyday’s service provisioning practices [11]. Addressing the
problem in a systematic way is required to open a new market
for the provisioning of in-network services [9].

A. Related work

Previous work focused on introducing a few new proper-
ties to the Internet’s architecture, such as in-network service
visibility and end-points control [14], [20]. The former guar-
antees that an in-network service is not hidden to any of the
communication’s end-points. The latter requires the network to
enable an end-point in deciding whether to use an in-network
service or not, when connecting to another end-point. Still,
the mentioned works assume that the node that provisions
a given service, i.e., the middlebox, is known in advance.
However, we notice that each in-network service is usually
implemented using several middleboxes, typically deployed in
different locations [2]. The selection of a specific middlebox
for the provisioning of a given service is performed by the in-
network service provider, which typically takes into account
a number of variables, including system and network loads,

end-point locations, local regulation constraints, etc. [12] To
solve a similar issue, services deployed at end-points employ
solutions such as DNS redirection [4] and IP anycast [6].

B. Gaps

We argue that those solutions are not applicable in the
context of in-network services and point out two significant
differences to support our position. First, for end-point’s
services there is an assumption that the user will contact
only one of such services in the context of a single network
communication. In practice, his means that there will be, e.g.,
the need to perform just one DNS name resolution per each
end-to-end network communication. In contrast, in presence
of intermediaries there could be an arbitrary number of in-
network services, introduced by different parties, e.g., content
and service providers, enterprises or even regular end-users.
Therefore, the mechanisms used for the handling of a single
service, e.g., DNS redirection, may not be suitable anymore.
In fact, they may not provide properties such as in-network
service visibility, or they could introduce important overheads
on critical performance metrics such as the connection es-
tablishment time [21]. Second, the mentioned mechanisms
optimize the serving node selection using metrics such as the
expected delay from the client (IP anycast) [2], sometimes
taking into account more complex variables such as load level
of the back-end infrastructure (DNS redirection) [13]. In pres-
ence of multiple in-network services, the current mechanisms
may provide not optimized serving nodes (i.e., middleboxes)
selection. In particular, at each middlebox, a new “next-hop
selection” would happen independently from the selections
performed at the other middleboxes. In fact, each in-network
service would perform its selection independently from the
other services and would optimize for the local optimum,
which may be very far from the global one. The remainder
of this paper will present a strawman solution to the problem
and highlight its issues, justifying the need for performing
additional research in such direction. To this end, we conclude
presenting open issues and our planned future work.

II. A STRAWMAN SOLUTION

To describe a concrete case, we use mcTLS for estab-
lishing an end-to-end communication through a number of
middleboxes. In short, mcTLS requires a client to build
a list of middleboxes’ IP addresses before establishing the
communication with a server. Then, the client establishes a
TCP connection with the first middlebox in the list and sends



Fig. 1: Example scenario. The user C connects to the bank S using
two in-network services. A parental control service implemented by
the middleboxes P1 and P2. A CDN service implemented by the
middleboxes M1, M2 and M3.

a ClientHello. Such message contains, among other things,
the list of middleboxes’ IP addresses that should be used in
the communication. In turn, each middlebox will establish a
connection to the next middlebox in the list, until the server
closes the chain. Notice that mcTLS does not define (i) how
the client obtains the middleboxes’ IP addresses, and (ii) how
the server includes its in-network services’ middleboxes in the
list. In fact, mcTLS assumes DNS is used for that (cfr Sec.6.1
of [14]).

Assume now a scenario in which a user connects to her
bank’s web site (Fig. 1). The user subscribed to a parental
control in-network service, which is implemented by a proxy
running in, e.g., a cloud datacenter. In particular, the parental
control service uses two proxies deployed at different loca-
tions, i.e., P1 and P2. In this scenario, the two proxies are at
about the same distance from the user. However, P1 is also
close to the bank, instead P2 and the bank are far from each
other. The bank subscribed to a CDN service. The CDN has a
number of middleboxes distributed in the network: M3 is the
closest to the user, while M1 and M2 are the closest to P1

and P2, respectively.
Our strawman solution uses DNS to discover the IP ad-

dresses of the middleboxes that should be used when the user
establishes a connection with the bank. In such a case, the
user introduces the parental control service by configuring a
proxy on her client. The proxy is specified with a domain
name such as parental-ctr.com. Likewise, the bank introduces
the CDN service by associating the bank’s domain name,
e.g., bank.com, with the CDN service domain, e.g., cdn.com.
The DNS mapping for parental-ctr.com and cdn.com to IP
addresses is dynamic, since the serving middlebox is selected
to be the closest (in terms of delay) to the requesting client.
Thus, when the user wants to establish a connection to the
bank, she will first resolve the bank’s domain name with a
DNS query. Since the bank is using the CDN service, the
name will be finally resolved to an IP address of a CDN’s
middlebox that is close the user’s location, e.g., M3. Then, the
user will perform a second DNS query to resolve the parental
control proxy’s domain name, obtaining the IP address of,
e.g., P2. In this case, the user will first establish a connection
to P2, which in turn establishes a connection to M3 (Fig. 1,
Path1). Unfortunately, M3 is a CDN’s middlebox far from P2,
yielding sub-optimal performance. A more efficient solution
would require a modification to mcTLS to include a list of

domain names in the ClientHello message, instead of using IP
addresses. With this modification each middlebox would be
required to perform a DNS query. Thus, once P2 receives the
ClientHello message from the user, it will in turn perform
a DNS resolution. This time, P2 will then connect to the
closer M2 (Fig. 1, Path2). However, also in this case the
solution is suboptimal, since P2 is the farthest of the proxies
from the bank. In this case, using P1 and M1 as middleboxes
would have been the optimal solution (Fig. 1, Optimal Path).
Furthermore, in both cases, the need to perform a DNS
query for each in-network service may negatively impact the
connection establishment time, which is a critical metric of
today’s network services [17].

III. FUTURE WORK

In light of the detailed examples, in this section we identify
a few areas that require further investigation and that will be
addressed in our future work. Our main observation is that the
problem is related to the uncoordinated decisions performed
by different parties. For instance, in the previous example both
the parental control and CDN services run their own service’s
location selection processes, while a coordinated placement
of the middleboxes may provide better performance [19].
Unfortunately, while in a single-party case decisions are easier
to coordinate [12], this is not the case when multiple parties
are involved. First, different parties may not be aware of each
other or may not be willing to exchange information among
them. Here, notice that it is not necessarily the case that a
party who contributes to the construction of an optimized
solution would also benefit from such a solution. Second,
assuming that parties agree on collaborating for building an
optimal solution, it is unclear what is the minimal amount of
information they should share. Third, once there is enough in-
formation to compute an optimal solution, such task should be
performed efficiently, to cope with the stringent performance
requirements of modern network applications. Here, notice this
is a difficult problem in which both information dissemination
and collection, as well as solution computation, should be
quick enough to not impact communications’ performance.
Finally, a system that solves the previous challenges should
be ideally deployable incrementally in the current network
architecture.

ACKNOWLEDGMENT

This research work has been partly funded by the EU in the
context of the ”FP7 ITN CleanSky” project (Grant Agreement:
PITN-GA-2013-607584).

REFERENCES

[1] C. Boulton, J. Rosenberg, G. Camarillo, and F. Audet. NAT Traversal
Practices for Client-Server SIP. RFC 6314 (Informational), July 2011.

[2] Matt Calder, Ashley Flavel, Ethan Katz-Bassett, Ratul Mahajan, and
Jitendra Padhye. Analyzing the performance of an anycast cdn. In
Proceedings of the 2015 ACM Conference on Internet Measurement
Conference, IMC ’15, pages 531–537, New York, NY, USA, 2015.
ACM.

[3] Thomas Callahan, Mark Allman, and Michael Rabinovich. On modern
dns behavior and properties. SIGCOMM Comput. Commun. Rev.,
43(3):7–15, July 2013.



[4] Fangfei Chen, Ramesh K. Sitaraman, and Marcelo Torres. End-user
mapping: Next generation request routing for content delivery. In
Proceedings of the 2015 ACM Conference on Special Interest Group
on Data Communication, SIGCOMM ’15, pages 167–181, New York,
NY, USA, 2015. ACM.

[5] Yingying Chen, Sourabh Jain, Vijay Kumar Adhikari, and Zhi-Li Zhang.
Characterizing roles of front-end servers in end-to-end performance
of dynamic content distribution. In Proceedings of the 2011 ACM
SIGCOMM Conference on Internet Measurement Conference, IMC ’11,
pages 559–568, New York, NY, USA, 2011. ACM.

[6] Danilo Cicalese, Jordan Auge, Diana Joumblatt, Tim ur Friedman, and
Dario Rossi. Characterizing ipv4 anycast adoption and deployment. In
ACM CoNEXT, Heidelberg, DE, 12/2015 2015. ACM, ACM.

[7] Xavier de Carné de Carnavalet and Mohammad Mannan. Killed by
proxy: Analyzing client-end tls interception software. In Network and
Distributed System Security Symposium (NDSS 2016), San Diego, CA,
USA, 2016.

[8] S. Loreto et al. Explicit trusted proxy in http/2.0. http://goo.gl/BUxQ22,
2014.

[9] Benjamin Frank, Ingmar Poese, Yin Lin, Georgios Smaragdakis, Anja
Feldmann, Bruce Maggs, Jannis Rake, Steve Uhlig, and Rick Weber.
Pushing CDN-ISP collaboration to the limit. SIGCOMM Comput.
Commun. Rev., 43(3):34–44, July 2013.

[10] Avast Software Inc. Avast 2016: Https scanning in web shield - faqs.
https://www.avast.com/it-it/faq.php?article=AVKB190, 2016.

[11] J. Liang, J. Jiang, H. Duan, K. Li, T. Wan, and J. Wu. When https
meets cdn: A case of authentication in delegated service. In 2014 IEEE
Symposium on Security and Privacy, pages 67–82, May 2014.

[12] Hongqiang Harry Liu, Raajay Viswanathan, Matt Calder, Aditya Akella,
Ratul Mahajan, Jitendra Padhye, and Ming Zhang. Efficiently delivering
online services over integrated infrastructure. In Proceedings of the 13th
Usenix Conference on Networked Systems Design and Implementation,
NSDI’16, pages 77–90, Berkeley, CA, USA, 2016. USENIX Associa-
tion.

[13] Bruce M. Maggs and Ramesh K. Sitaraman. Algorithmic nuggets in
content delivery. SIGCOMM Comput. Commun. Rev., 45(3):52–66, July
2015.

[14] David Naylor, Kyle Schomp, Matteo Varvello, Ilias Leontiadis, Jeremy
Blackburn, Diego R. López, Konstantina Papagiannaki, Pablo Ro-
driguez Rodriguez, and Peter Steenkiste. Multi-context tls (mcTLS):
Enabling secure in-network functionality in tls. In Proceedings of the
2015 ACM Conference on Special Interest Group on Data Communi-
cation, SIGCOMM ’15, pages 199–212, New York, NY, USA, 2015.
ACM.

[15] Erik Nygren, Ramesh K. Sitaraman, and Jennifer Sun. The akamai net-
work: A platform for high-performance internet applications. SIGOPS
Oper. Syst. Rev., 44(3):2–19, August 2010.

[16] Fotios Papaodyssefs, Costas Iordanou, Jeremy Blackburn, Nikolaos
Laoutaris, and Konstantina Papagiannaki. Web identity translator:
Behavioral advertising and identity privacy with wit. In Proceedings
of the 14th ACM Workshop on Hot Topics in Networks, HotNets-XIV,
pages 3:1–3:7, New York, NY, USA, 2015. ACM.

[17] Sivasankar Radhakrishnan, Yuchung Cheng, Jerry Chu, Arvind Jain,
and Barath Raghavan. Tcp fast open. In Proceedings of the Seventh
COnference on Emerging Networking EXperiments and Technologies,
CoNEXT ’11, pages 21:1–21:12, New York, NY, USA, 2011. ACM.

[18] Justine Sherry, Shaddi Hasan, Colin Scott, Arvind Krishnamurthy, Sylvia
Ratnasamy, and Vyas Sekar. Making middleboxes someone else’s
problem: Network processing as a cloud service. SIGCOMM Comput.
Commun. Rev., 42(4):13–24, August 2012.

[19] Giuseppe Siracusano, Roberto Bifulco, Simon Kuenzer, Stefano Salsano,
Nicola Blefari Melazzi, and Felipe Huici. On the fly tcp acceleration
with miniproxy. In Proceedings of the 2016 Workshop on Hot Topics in
Middleboxes and Network Function Virtualization, HotMIddlebox ’16,
pages 44–49, New York, NY, USA, 2016. ACM.

[20] Michael Walfish, Jeremy Stribling, Maxwell Krohn, Hari Balakrishnan,
Robert Morris, and Scott Shenker. Middleboxes no longer considered
harmful. In Proceedings of the 6th Conference on Symposium on
Opearting Systems Design & Implementation - Volume 6, OSDI’04,
pages 15–15, Berkeley, CA, USA, 2004. USENIX Association.

[21] Wenxuan Zhou, Qingxi Li, Matthew Caesar, and P. Brighten Godfrey.
Asap: A low-latency transport layer. In Proceedings of the Seventh
COnference on Emerging Networking EXperiments and Technologies,
CoNEXT ’11, pages 20:1–20:12, New York, NY, USA, 2011. ACM.

http://goo.gl/BUxQ22
https://www.avast.com/it-it/faq.php?article=AVKB190

	Introduction
	Related work
	Gaps

	A strawman solution
	Future work
	References

