Capability-Aware SDN Application Models: Dealing
with Network Heterogeneity

Felipe A. Lopes'*, Robert Bauer?, and Stenio Fernandes!
TCentro de Informética, Universidade Federal de Pernambuco (Recife, Brazil)
fKarlsruhe Institute of Technology (Karlsruhe, Germany)

Abstract—Software-Defined Networking (SDN) is a well
known key enabler for flexible network operation. However,
different types of SDN controllers and SDN switches with a
wide range of capabilities (e.g., different protocol versions and
support for various hardware features) could limit this flexibility.
The not easy task of developing SDN applications becomes even
more challenging when we consider such diversity. To soften
this issue, we extend our ongoing work in the area of Model-
Driven Networking (MDN) to explicitly support infrastructure
heterogeneity. More precisely, our extended MDN framework
provides the possibility to generate SDN applications from MDN
models considering the capabilities of the underlying network
elements. In this paper, as an use case, we present MDN to develop
a capability-aware network monitoring application.

I. INTRODUCTION

Software-Defined Networking (SDN) is an emerging trend
for programmable and flexible network control. However,
several challenges still exist regarding the development of
new network applications for the SDN paradigm. Even though
current SDN programming languages enable application devel-
opment based on a high abstraction level, the developer still
needs to concern with issues like compatibility between SDN
programming languages and controllers, rule consistency, and
packet header formats.

Moreover, real SDN deployments often consist of a wide
range of heterogeneous entities (e.g., constantly evolving pro-
tocols, SDN controllers, and switches with different capabili-
ties). Therefore, the lack of tools for easy SDN application
development and validation together with the problem of
infrastructure heterogeneity composes the perfect storm to
hinder flexibility. For instance, if an SDN application considers
a specific monitoring action (e.g., NetFlow) and this action
needs to be executed on a network element that does not
support it, the application may not run properly.

The Model-Driven Networking (MDN) framework created
by Lopes et al. [1] can be seen as a feasible step into the
direction of a vendor-agnostic tool for high-level SDN appli-
cation development. This paper presents the contribution of our
research and describes the extension to our previous work on
MDN so that the modeled applications can deal with network
heterogeneity. To achieve this, we include modeling support
for different types of packet headers, instruction sets, and
switch capabilities. In addition, we incorporate the idea of on-
demand capacity and feature delegation presented in [2] into
the process of generating capability-aware SDN applications.

II. MODEL-DRIVEN NETWORKING (MDN)

MDN is a framework and our main contribution to increase
the abstraction level in developing SDN applications [1]. It
is based on the Model-Driven Engineering (MDE) paradigm,
providing a Domain-Specific Modeling Language (DSML)
and a Computer-Aided Software Engineering (CASE) tool
for enabling the modeling of SDN applications and their
underlying environments.

Our overall idea behind MDN arose after analyzing several
programming languages proposed to develop SDN applications
in the last years. We have noticed that although such languages
had brought some benefits for increasing the abstraction level
in developing SDN applications, there are still open issues like
the lack of tools for developing and validating applications, low
level details of SDN protocols (e.g., OpenFlow versions), and
error-prone actions regarding flow rules.

Aiming to offer a solution for the problems above, we have
designed and built the architecture depicted in Figure 1. The
top layer - Application Models - involves the models created in
our CASE tool. Such models are based on relationships and
constraints that form the layer below named Metamodel &
Semantics. After verifying the consistency of an application
model, the Code Generation layer is responsible for trans-
forming high-level models into source code used to interact
with a target controller. The MDN architecture expects that the
selected SDN controller uses the Southbound API to execute
the generated code (i.e., SDN application) as instructions and
rules for programming the forwarding plane.

Increasing the abstraction level for developing or managing
SDN applications is the objective of several research efforts.
In [3] we have classified the current approaches into the follow-
ing categories: programming languages (based on the Domain-
Specific Language paradigm) and modeling approaches. The
former are distinguished by the structural paradigm applied
(e.g., declarative, functional reactive programming). The re-
lated modeling approaches are also proposals focusing on mod-
eling and graphical editors [4] [5]. However, MDN provides
more than a trivial modeling and CASE tool. As MDN is based
on a DSML its features make it feasible to address several
current issues in developing SDN applications, such as: low
level details of SDN protocols, validation, and dependency
between programming languages and controllers.

Network Load

p Firewall .
Monitor Balancing
- - -

Application
Models

Metamodel

Generation | & Semantics

Validation

Templates
5 Rules

Code

Code Generation Engine

Ryu OpenDaylight POX

Control
Plane

| I |
I I [

SDN Protocol (e.g., OpenFlow)

Southbound
API

. 1: Elements of the MDN architecture.

3|
da

ITI. GENERATING CAPABILITY-AWARE SDN
APPLICATIONS

SDN switch heterogeneity is a well known issue [6].
To illustrate the problem, consider the following example:
a provider needs to develop a monitoring application for a
network composed of two interconnected switches S/ and
S2. Those switches have different capabilities, e.g., S2 is
capable of handling NetFlow (for instance) and S/ is not.
However, the provider wants to use NetFlow for the whole
network (including S7) without having to change the hardware
or manually adapt the application. The extension to MDN
prior mentioned deals with issues like that above. By adding
support for the description of switch capabilities in the MDN
metamodel, those capabilities can be considered in the code
generation process (cf. Section II). As a result, the generated
applications can be extended with mechanisms to deal with
capability shortcomings. The new application development
workflow including the extension looks as follows:

1) Modeling step, including infrastructure capabilities.

2) Evaluate if the application will work without limita-
tions on the current model.

3) If not, try to define mechanisms for capability-
awareness to avoid such limitations.

We currently rely on replication and flow delegation [2]
as concrete mechanisms for capability-awareness (step three
of the workflow). If, for example, a network device can not
provide a certain capability, OpenFlow (OF) rules are used
to automatically delegate the affected flows to a suitable
neighboring device where they can be processed. The required
rules and the control logic for flow redirection are included in
the Code Generation layer of the MDN framework.

Figure 2 depicts the necessary steps of generating a
capability-aware application for the monitoring use case in-
troduced above. It considers a condition in which S/ does not
support NetFlow. The first step in Figure 2 refers to the creation
of an application model (i.e., network monitor) by a network
developer or operator. Step 2 shows a code snippet (written
in Object Constraint Language) of a controller template that
is present in the Code Generation layer. Such snippet exhibits
how to guarantee flexible code by tagging S/ flows with a
NetFlow tag and proactively replicating them to S2 (we omitted
the creation of rules in S2 for further processing). Step 3 is a
snippet of the final application code.

Monitor Protocol: NetFlow | [% for monitor in monitors: %]
+ Destination: 192 168.1.4 | class [%monitor. proto%IMonitor [%monitor. id%] :
q def networkMonitor (self, ev, datapath):
[% for target in targets:
if IcheckCapabilities(target, MONITOR):
if switchAux=getCapableSwitch(MONITOR):
replicateFlow(target,switchAux, MONITOR)

%]‘
s2 E

class NetFlowMonitorl:
def networkMonitor (self, ev, datapath):
if ev.msg.datapath.id == 1
and ev.msg.metadata == @:
self.set_metadata(ev, ‘NetFlow’)
match = ofp_parser.OFPMatch(in_port=ev.port)
actions = ofp_parser.0FPActionOutput(
ofp.OFPP_NORMAL)
req = ofp_parser.OFPFlowMod(self, ev.dst,
switchAux)

SDN
Controller

/—lﬁ

Network Modeler

Fig. 2: Generating a capability-aware monitoring application

Our initial performance analysis (compared to the exper-
iments published in [1]) shows a mean increasing of 6%
for validation time of the network scenario (including the
modeled application). Besides, there is an increasing of 11%
in generating applications when considering the verification
of all possible packet headers (e.g., OF specifications 1.0-1.5)
and monitoring capabilities (e.g., NetFlow) present in network
switches. The impact on network performance (e.g., flow table
usage, hop count) is an open issue at this moment.

IV. CONCLUSIONS AND FUTURE WORK

Consider applications that need resources or capabilities
not available at every network node. Instead of not supporting
a service or discarding the utilization of a network node,
capability-aware SDN applications look for alternative ways
to satisfy specific requirements by considering capabilities of
the whole network. This paper proposes an extension to the
MDN framework so that capability-aware SDN applications
can be automatically created using a high-level, model-driven
approach. We therefore integrate information regarding the un-
derlying infrastructure into the MDN metamodel and use flow
delegation at the Code Generation layer to realize capability-
awareness.

The proactive behavior and the identification of switch
capabilities enabled by our extension can improve performance
and compatibility of generated applications (e.g., in scenar-
ios where different switches support different OF versions).
Application placement recommendations, the impact of real-
time network state on application models, and a complete
performance evaluation are issues defined for future work.

ACKNOWLEDGMENT
The authors would like to thank the FACEPE and ERASMUS
(grants IBPG-1200-1.03/14 and BM15DM0988 for Felipe A. Lopes).
This work has been performed in the framework of the CELTIC
EUREKA project SENDATE-PLANETS (Project ID C2015/3-1), and
it is partly funded by the German BMBF (Project ID 16KIS0460K).

REFERENCES

[1] FE A. Lopes, L. Lima, M. Santos, R. Fidalgo, and S. Fernandes, “High-
level modeling and application validation for SDN,” Proceedings of the
NOMS 2016 - 2016 IEEE/IFIP Network Operations and Management
Symposium, pp. 197-205, 2016.

[2] R. Bauer and M. Zitterbart, “Port based capacity extensions (pbces):
Improving sdns flow table scalability,” in 28th International Teletraffic
Congress (ITC 28), (Wuerzburg, Germany), 2016.

[3] FE A. Lopes, M. Santos, R. Fidalgo, and S. Fernandes, “A Software En-
gineering Perspective on SDN Programmability,” IEEE Communications
Surveys and Tutorials, vol. 18, no. 2, pp. 1255-1272, 2016.

[4] T. Benson, A. Anand, A. Akella, and M. Zhang, “Visual Network
Description: A Customizable GUI for the Creation of Software Defined
Network Simulations,” in Proceedings of the European Multidisciplinary
Society for Modelling and Simulation Technology / European Simulation
Multiconference (ESM 2013), no. Lantz, (Lancaster), pp. 149-153, 2013.

[5] B. Pinheiro, R. Chaves, E. Cerqueira, and A. Abelem, “CIM-SDN: A
Common Information Model extension for Software-Defined Network-
ing,” in 2013 IEEE Globecom Workshops, GC Wkshps 2013, pp. 836—
841, Ieee, dec 2013.

[6] V.Hazlewood, K. Benninger, G. Peterson, J. Charcalla, B. Sparks, J. Han-
ley, A. Adams, B. Learn, R. Budden, D. Simmel, et al., “Developing
applications with networking capabilities via end-to-end sdn (dances),”
in Proceedings of the XSEDE16 Conference on Diversity, Big Data, and
Science at Scale, p. 29, ACM, 2016.

